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Abstract

A numerical investigation is performed for the MHD stagnation point flow of water

based nanofliuds. Heat and mass transfer is investigated for steady, viscous dissipa-

tions, Joule heating and thermal radiation in a porous medium. The governing partial

differential equations are transformed into an arrangement of the non-linear ordinary

differential equations by using the similarity transformation. Utilizing the shooting

method, the system of ordinary differential equations has been solved with the help

of the computational software MATLAB to compute the numerical results. The nu-

merical solution obtained for the velocity, temperature and concentration profiles has

been presented through graphs for different choice of the physical parameters. The

numerical values of the skin friction, Nusselt and Sherwood numbers have also been

presented and analyzed through tables.
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Chapter 1

Introduction

Heat and mass transfer is an active research area in fluid dynamics over last few

decades. Heat and mass transfer have various applications, for example,geothermal

reservoir, drying of porous solids, thermal insulation, enhanced oil recovery and un-

derground species transport. In the latest engineering applications, heat and mass

transfer with chemical reaction is of great interest for researchers. Rashad et al.[1]

discussed the heat and mass exchange. An unsteady MHD flow, heat and mass trans-

fer over a vertical rotating cone in the presence of heat generation/absorption was

discussed by Chamka and Mudhalf [2]. The boundary layer flow with heat and mass

transfer in a porous medium has great importance in industrial applications such as

metal and polymer extrusion, exchangers, chemical processing equipment, etc. A solar-

liquid heating collector transfers the solar energy to the internal energy of the transport

medium as a kind of heat transfer. By improving the thermophysical properties of the

conventional heat transfer fluids, heat transfer performance can be increased.

Fluid is the material which alters continuously by the effect of shear stress. A liquid

containing nanometer-sized particles is called nanofluid. Nanoparticles range between

1 and 100nm. In 1995 Choi and Eastman [3] introduced the fundamental vision of in-

corporating the nano particles within the base fluidto enhance the thermal conductiv-

ity. Nano particles are created from different materials such metals (Al, Cu), carbides

(SiC), oxides(Al2O3) or nonmetals (graphite, carbon nanotubes) and the base fluid is

1



Introduction 2

usually a conductive fluid such as water,ethylene glycol.To enhance the thermal con-

ductivity of the base fluids, nanofluids are used e.g, water, ethylene glycol, propylene

glycol etc. They have many applications in engineering and biomedical such as cool-

ing, cancer therapy etc. Wong [4] discussed the nanofluid applications. Nanofluid offer

many different advantages and applications, for example, fuel cell, nuclear reactor,

biomedicine and microelectronics. Khan and Pop [5] explained the work on boundary

layer flow of nanofluid through a stretched sheet. Izadi et al.[6] numerically discussed

the laminar forced convection of alumina-water nanofluid in the annulus. Pak and Cho

[7] shows that the Nusselt number and Reynolds number for Al2O3water nanofluids

increment with an increment value of volume fraction. In any case, the convective heat

transfer coefficient for nanofluids at a volume fraction 3 perecent was observed to be

12 percent less than that of pure water while considering a constant normal velocity.

Ahmad and Pop [8] and Hamad at al.[9] studied of the forced convection of nanofluids

over a flat plate.

The area of the magnetic properties of electrically conducting fluids is called Magne-

tohydrodynamics (MHD). Megantic fluids, liquids, metals, salt, water and electrolytes

are the examples of MHD. Hannes Alfen introduced the word MHD. MHD is the

sequence of Navier -stokes equations and Maxwell equations ofelectromagnetism is

discussed by Chakraborty et al. [10]. Shah et al.[11] discussed the MHD effects and

heat transfer for the UCM fluid along with Joule heating and thermal radiation using

the Cattaneo-Christov heat flux model. Hayat et al. [12] clarified the mass exchange

and MHD flow of an upper convected Maxwell fluid with an extended sheet. Ibrahim

and Suneetha [13] studied the effects of Joule heating and viscous dissipation on steady

MHD Marangoni convective flow over a flat surface in the presence of radiation. Ellahi

[14] considered the MHD flow of non-Newtonian nanofluid ina pipe with variable vis-

cosity and observed that the MHD parameter decreases the fluid motion and speed is

bigger than that of the temperature profile. Hiemenz [15] was the first to think about

the thick liquid in the neighbour of stagnation point. His work was further explored

by another rearchers. Ishak et al.[16] discussed the MHD flow through stretched a

sheet by using the kaller box method. Mahmoud and Waheed [17] studied the MHD
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stagnation point flow towards a surface in motion with radiation. Yasin et al.[18] ex-

plained the stagnation point as well as the heat transfer through a shrinking sheet in a

micropolar fluid. In different devices, the effect of viscous dissipation plays an impor-

tant role in regular convection. It also has a strong gravitational field and geological

processes. Hossain [19] discussed the viscous dissipation and Joule heating effect on

the flow of an electrically conducting compressible and viscous fluid. Watanabe and

Pop [20] highlighted the impact of stress work and viscous dissipation on MHD flow

over a flat plate with Joule heating and dissipation through the flow of thick, incom-

pressible and electrically conducting fluid past a semi-infinite impermeable flat. The

unsteady free convection boundary layer flow of a nanofluid along a stretching sheet

in the presence of magnetic field with thermal radiation was talked about by Khan et

al.[21]. The chemical reaction can further be classified by consider the heterogeneous

and homogenous processes. In the case of the strong compound system, the reaction

is heterogenous. In most of the cases of chemical reaction processes, the concentra-

tion rate depends upon the species itself as discussed by Magyari and Chamkha et

al.[22]. Devi and Kandasmy [23] analyzed the impact of homogenous chemical reac-

tion with heat and mass transfer laminar flow along with semi-infinite horizontal plate.

Chamkha and Rashad [24] talked about the impact of chemical reaction on MHD flow

in the presence of heat generation or absorption of uniform vertical permeable surface.

Raptis and Pardikis [25] discussed the heat transfer of a microfluid in the presence of

radiation. A numerical study of the MHD flow of Maxwell liquid in the presence of

chemical reaction and thermophoresis is reported by Shateyi [26]. Related issues in this

area are also explained by Mansour et al. [27] and Bhattacharyya[28]. Rana and Bhar-

gava [29] worked out the heat transfer of a nanofluid through a non-linear stretched

sheet by using the finite element and finite difference methods. Das [30] explained the

impact of chemical reaction with radiation on the heat and mass exchange along the

MHD flow. In 2014, Chutia and Deka [31] numerically discussed the heat transfer and

steady MHD flow in a rectangular electrically protected pipe in the existence of the

attractive field. In energy equation, they considered both the Joule heating and vis-

cous dissipation. The combined effect of Joules heating and viscous dissipation on the
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mixed convection MHD flow in a vertical channel was noticed by Abo-Eldahab and El-

Aziz [32]. Sparrow and Cess [33] examined the Magnetohydrodynamic free convection

flow of an electrically conducting fluid along a heated semi-infinite vertical flat plate

in the presence of a strong magnetic field. Takhar and Soundalgekar [34] have studied

the effects of viscous and Joule heating on the problem posed by Sparrow and Cess

[33], using the series expansion method. Mabood at al. [35] discussed the MHD flow

of heat and mass transfer of nanofluids in the porous medium with radiation, viscous

dissipation, chemical reaction.

Thesis contribution:

In this thesis, the findings of Ref [35] have been reproduced and extended by considering

the Joule heating, a uniform porous medium and temperature dependant viscosity

and thermal radiation. The acquired arrangement of partial differential equations are

transformed into non-linear and coupled ordinary differential equations by using a

similarity transformation. With the help of shooting technique, numerical solution

of the system of ordinary differential equations is achieved and then compared the

numerical results obtained by using the Matlab builtin function bvp4c.

Thesis outline:

The thesis is divided into five chapters:

Chapter 2, contains the basic definitions and terminology .

Chapter 3, contains the detailed review of Ref [35]. A numerical study of viscous dis-

sipation, radiation and chemical reaction of MHD stagnation point flow of nanofluids

in porous medium. Heat and mass exchange of nanofluid over a flat plate in porous

medium is analyzed. The equations of the flow model are solved numerically. The

impact of physical parameters concerning with flow model have also been presented
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through graphs and tables. The result achieved are also compared with the published

results of Ref [35] an found excellent agreement between them.

In Chapter 4, The heat and mass transfer are analysed for steady, viscous dissi-

pations and Joule heating past a porous medium. This chapter consists mathematical

formulation of the extended model, development of numerical solution and results.

Chapter 5 includes the conclusion of the entire research and recommendations for

the future work.

All the references are listed in Bibliography



Chapter 2

Basic definitions and governing

equations

In this chapter, some basic laws, concepts, terminologies and definitions Ref[36] will

be explained, which will be helpful in continuing the work for the next chapters.

2.1 Fluid

“A fluid is a substance that deforms continuously under the application of a shear

stress no matter how small the stress may be. Thus fluids comprise the liquid and gas

(or vapour) phases of the physical forms in which matter exists.”

2.2 Fluid mechanics

“Fluid mechanics deals with the behaviour of fluids at rest or in motion. There are

two branches of fluid mechanics. ”

6
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2.3 Fluid statics

“Fluid static is the part of fluid mechanics, that deals with the fluid and its charac-

teristics at the constant position. ”

2.4 Fluid dynamics

“The branch of fluid mechanics that covers the properties of the fluid in the state of

progression from one place to another is called fluid dynamics. ”

2.5 Flow

“It is the deformation of the material under the influence of different forces. If the

deformation increase is continuous without any limit then the process is known as

flow.”

2.6 Uniform and non-uniform flows

“The flow is said to be uniform if the magnitude and direction of flow velocity are the

same at every point and flow is said to be non-uniform if the velocity is not the same

at each point of the flow, at a given instant.” Homogenous mixture of base fluid and

nanoparticle is termed as the nanofluid.”

2.7 Steady and unsteady flows

“A flow is said to be steady flow in which the fluid properties do not change with time

at a specific point, i.e.
∂λ

∂t
= 0, (2.1)
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where λ is any fluid property.” “A flow is said to be unsteady flow in which fluid

properties change with time. i.e.,
∂λ

∂t
6= 0.′′ (2.2)

2.8 Laminar and turbulent flows

“A flow is laminar in which the fluid particles move in smooth layers or laminas and a

turbulent in which the fluid particles rapidly mix as they move along due to random

three-dimensional velocity fluctuations.”

2.9 Compressible and incompressible flows

“Flow in which variations in density are negligible is termed as incompressible other-

wise it is called compressible. The most common example of compressible flow is the

flow of gases, while the flow of liquids may frequently be treated as incompressible.”

“Mathematically,
Dρ

Dt
= 0,

where ρ denotes the fluid density and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+ V · ∇. (2.3)

In Eq. (2.3), V denotes the velocity of the flow and ∇ is the differential operator. In

Cartesian coordinate system, ∇ is given as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.′′
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2.10 Viscosity

“This is the internal property of a fluid by virtue of which it offers resistance to the

flow. Mathematically it is defined as the ratio of the shear stress to the rate of shear

strain. i.e,

V iscosity = µ =
shearstress

rate of shear strain
.

In the above definition, µ is the co efficient of viscosity or absolute viscosity or dynamics

viscosity or simply viscosity having dimension [ M
LT

]. Water is thin having low viscosity

and other hand honey is thick having higher viscosity. Usually liquids have non-zero

viscosity. Its unit is Pa.s= kg
(s.m)

. ”

2.10.1 Dynamic viscosity

“The property of the fluid that measures the internal resistance of fluid is called dy-

namic viscosity. This resistance arises from the attractive forces between the molecules

of the fluid.

Mathematically, it is written as the ratio of the shear stress to the rate of shear strain

and it is denoted by µ.

Viscosity(µ) =
Shear stress

Rate of shear strain
.

In the above expression µ is called the co-efficient of viscosity. This is also known as

the absolute viscosity or simply viscosity and its dimension is [ML−1T−1]. In system

its unit is kg/ms or Pascal-second [Pa.s].”

2.10.2 Kinematic viscosity

“The kinematic viscosity represents the ratio of dynamic viscosity µ to the density of

the fluid ρ, it is represented by ν,
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Mathematically it is written as

ν =
µ

ρ
.

The dimension of kinematic viscosity is [L2T−1] and its unit in SI system is m2/s.”

2.11 Nanofluid

“

2.12 Newtonian and non-Newtonian fluid

“The fluid is said to be a Newtonian fluid in which the stress arising from its flow at

every point is linearly proportional to the local strain rate. Newtonian fluid behaviour

is described by the relation

τ = µ
du

dy
.

In the above equation, τ is the stress tensor, µ is the viscosity and du
dy

is the deformation

rate. Fluids are said to be non-Newtonian fluids for which the shear stress is not

directly proportional to the deformation rate.”

2.13 Generalized continuity equation

“Continuity equation is obtained from the law of conservation of mass which states

that mass can neither be created nor be destroyed inside a control volume. The mass

inside the fixed control system will not change if we examine a differential control

volume system enclosed by a surface fixed in space, Then the equation of continuity

can be written as”

“
∂ρ

∂t
+∇.(ρV) = 0. (2.4)
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If the density is constant and spatially uniform, in that case Eq. (2.4) become

∇ ·V = 0.′′

2.14 Generalized Momentum equation

“The equation of generalized linear momentum for the fluid particle is acquired. It

is expressed as: the net force F acting on a fluid particle is equal to the time rate of

change of linear momentum. Consider the mass in a system defined by control surface

of infinitesimally small dimensions dx, dy and dz. The mass of the system is steady.

Newtons second law can be composed as

m
DV

Dt
= F.

ρ
DV

Dt
= ∇.τ + ρb,

where ρb is the net body force, ∇.τ is the surface forces and τ is the Cauchy stress

tensor.”

2.15 Magnetohydrodynamics

“The study of the dynamics of electrically conducting fluids for example plasmas or

electrolytes, is known as magnetohydrodynamics (MHD).”

2.16 Stagnation point

“It is a point in a flow field where the fluid velocity is zero. It exists at the surface of

objects in the field where fluid is rest by the object. Static pressure is the example of

stagnation point.”
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2.17 Viscous dissipation

“The process in which the work done by fluid is converted into heat is called viscous

dissipation.”

2.18 Joule heating

“The heat which is produced due to flow of current through conductor is called Joule

heating.”

2.19 Radiation

“Radiation is the energy transfer due to the release of photons or electromagnetic

waves from a surface volume. Radiation doesn’t require any medium to transfer heat.

The energy produced by radiation is transformed by electromagnetic waves.”

2.20 Porosity

“The porosity is the relationship of the volume of void space to the bulk volume of

a permeable medium. A permeable medium is often identified by its porosity. The

momentum equation with porosity and magnetohydrodynamics is as the following

ρ
DV

Dt
= ∇.τ − ρσB2V − ρkV. (2.5)

Here k and B are the porosity and magnetic field of the medium separately.”

2.21 Mass transfer

“Mass exchange is the total movement of mass from one place to another.”
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2.22 Heat transfer

“It is the energy transfer due to the temperature difference. At the point when there is

a temperature contrast in a medium or between media, heat transfer must take place.

Heat transfer is normally an object from high temperature to a lower temperature.”

2.23 Conduction

“Conduction is the process in which heat is transferred through the material between

the objects that are in physical contact. For example: picking up a hot cup of tea.”

2.24 Convection

“Convection is a mechanism in which heat is transferred through fluids (gases or liq-

uids) from a hot place to a cool place. For example: Macaroni rising and falling in a

pot of boiling water.”

2.24.1 Forced convection

“Forced convection is a process in which fluid motion is produced by an external source.

It is a special type of heat transfer in which fluid moves in order to increase the heat

transfer. In other words, a method of heat transfer in which heat transfer is caused by

dependent source like a fan and pump etc, is called forced convection. For example:

Gas convection heaters have a gas burner to generate the heat, and a fan to force the

heated air to circulate around the room.”

2.24.2 Natural Convection

“Natural convection is a heat transport process, in which the heat transfer is not

caused by an external source, like pump, fan and suction. It happens due to the
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Figure 2.1: Example of forced convection.

temperature differences which affect the density of the fluid. It is also called free

convection. Example: Daily weather.”

2.24.3 Mixed convection

“It is a combination of both forced convection and natural convection. For example

if fluid is moving upward along the moment of the vertical stretching sheet is forced

between while in the same phenomena fluid is freely falling due to the gravity which

is forced convection. When these two phenomena appear in the same model then such

kind of flow is mixed convection.”

2.25 Thermal conductivity

“Thermal conductivity (κ) is the property of a material related to its ability to transfer

heat. Mathematically,

κ =
q∇l
S∇T

,

where q is the heat passing through a surface area S and the effect of a temperature

difference ∇T over a distance is ∇l. Here l, S and ∇T all are assumed to be of

unit measurement. In system unit of thermal conductivity is W
m.κ

and its dimension is

[MLT−3θ−1].”
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2.26 Thermal diffusivity

“Thermal diffusivity is material,s property which identifies the unsteady heat conduc-

tion. Mathematically, it can be written as,

α =
κ

ρCp
,

where κ, ρ and Cp represents the thermal conductivity of material, the density and

the specific heat capacity. In SI system unit and dimension of thermal diffusivity are

m2s−1 and [LT−1] respectively.”

2.27 Dimensionless numbers

2.27.1 Reynolds number Re

“It is a dimensionless number which is used to clarify the different flow behaviours like

turbulent or laminar flow. It helps to measure the ratio between inertial force and the

viscous force. Mathematically,

Re =
ρU2

L
µU
L2

=⇒ Re =
LU

ν
,

where U denotes the free stream velocity, L the characteristics length. At low Reynolds

number, laminar flow arises where the viscous forces are dominant. At high Reynolds

number, turbulent flow arises where the inertial forces are dominant.”

2.27.2 Prandtal number (Pr)

“It is the ratio between the momentum diffusivity (ν) and thermal diffusivity (α).

Mathematically, it can be defined as”

“Pr =
ν

α
=

µ/ρ

k/cp
=
µcp
k
,
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where µ represents the dynamic viscosity, Cp denotes the specific heat and κ stands for

thermal conductivity. The relative thickness of thermal and momentum boundary layer

is controlled by Prandtal number. For small Pr, heat distributed rapidly corresponds

to the momentum.”

2.27.3 Nusselt number (Nu)

“It is the ratio of the convective to the conductive heat transfer to the boundary.

Mathematically,

Nu =
hL

κ
,

where h stands for convective heat transfer, L for the characteristics length and κ

stands for the thermal conductivity.”

2.27.4 Sherwood number (Shx)

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Shx =
kL

D
,

here L is characteristics lenght, D is the mass diffusivity and k is the mass transfer

coefficient.

2.27.5 Skin friction coefficient (Cfx)

“Skin friction coefficient occurs between the fluid and the solid surface which leads to

slow down the motion of the fluid. The skin friction coefficient can be defined as

Cf =
2τw
ρU2

,

where τw denotes the wall shear stress, ρ the density and U the free-stream velocity.”
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2.27.6 Eckert number (Ec)

“It is the dimensionless number used in continuum mechanics. It describes the re-

lation between flows and the boundary layer enthalpy difference and it is used for

characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T
,′′

2.28 Boundary layer flow

“The concept of boundary layer was first introduced by Ludwig Prandtl [37], a German

aerodynamicist, in 1904. Prandtl introduced the basic idea of the boundary layer in

the motion of a fluid over a surface. Boundary layer is a flow layer of fluid close to the

solid region of the wall in contact where the viscosity effects are significants. The flow

in this layer is usually laminar. The boundary layer thickness is the measure of the

distance apart from the surface. There are two types of boundary layers:

• Hydrodynamic (velocity) boundary layer

• Thermal boundary layer”

2.28.1 Hydrodynamic boundary layer

“A region of a fluid flow where the transition from zero velocity at the solid surface

to the free stream velocity at some extent far from the surface in the direction normal

to the flow takes place in a very thin layer, is known as the hydrodynamic boundary

layer.”

2.28.2 Thermal boundary layer

“The heat transfer exchange surface and the free stream a liquid or a gaseous agent for

heat transfer. From wall to free stream we come across the change of temperature of
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heat transfer agent. It increases from wall to the main stream. The surface temperature

is assumed to be equal to the temperature of the fluid layer closed to the wall inside

the boundary and this temperature is equal to the temperature of the bulk at some

point in the fluid.”



Chapter 3

Viscous dissipation and chemical

reaction for MHD stagnation point

flow of nanofluids in porous

medium

3.1 Introduction

The numerical study of MHD flow with heat and mass exchange of viscous, incompress-

ible and two-dimensional nanofluid over a flat plate in a uniform permeable medium

has been taken under consideration. Using the similarity transformation, the governing

PDEs are transformed into the ODEs. The numerical solution for the system of the

differential equations is achieved by using the shooting technique. Numerical results

for different parameters are found to be in excellent matching with those obtained by

the MATLAB built-in function bvp4c. In this chapter, graphs and tables are also dis-

cussed to show the importance of different parameters involved in the equation. This

chapter provides a detailed review of Ref [35].

19
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3.2 Mathematical modeling

A two dimensional boundary layer flow of a viscous, Newtonian and incompressible

nanofluid flow through a flat plate in a porous medium has been considered with main

focus on the heat and mass transfer. The geometry of the flow model is shown in

Figure 3.1.

Figure 3.1: Geometry for the flow under consideration.

The flow is described by the equation of continuity, equation of momentum and the

energy equation as

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

ρnf
(U∞ − u), (3.2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−K(C − C∞). (3.4)
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Boundary conditions can be written as

u = v = 0, T = Tw = T∞ + T0e
x
2L , C = Cw = C∞ + C0e

x
2L at y = 0, (3.5)

u→ U∞ = ae
x
L , T → T∞, C → C∞ as y →∞. (3.6)

Here σs is the electrical conductivity of the base-fluid whereas σnf , νnf , ρnf , αnf ,knf

are the electric conductivity, the effective viscosity, the effective density, the effec-

tive thermal diffusivity, the thermal conductivity of the nanofluid respectively. These

quantities are formulated as follows:

αnf =
knf

(ρcp)nf
, (3.7)

ρnf = (1− φ)ρf + φρs, (3.8)

µnf =
µf

(1− φ)2.5
, (3.9)

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s, (3.10)

knf
kf

=
Ks + 2Kf − 2φ(Kf −Ks)

Ks + 2Kf + 2φ(Kf −Ks)
, (3.11)

σnf = (1− φ)σf + φσs, (3.12)

νf =
µf
ρf
, (3.13)

K = Koe
−x
L , (3.14)

B = Boe
x
2L . (3.15)

The radiative heat flux qr, by using the Rosseland approximation for radiation, can be

written as

qr =
−4σ∗

3k∗
∂T 4

∂y
, (3.16)

where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient. If tem-

perature contrast is very small, then the temperature difference T 4 might be extended

about T∞ in a Taylor series, as follows:
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T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1 +

12T 2
∞

2!
(T − T∞)2 +

24T∞
3!

(T − T∞)3 +
24

4!
(T − T∞)4.

Disregarding the higher order terms,

T 4 = T 4
∞ + 4T 3

∞(T − T∞)

⇒ T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞

⇒ T 4 = 4T 3
∞T − 3T 4

∞

⇒ ∂T 4

∂y
= 4T 3

∞
∂T

∂y
. (3.17)

Using (3.17) in (3.16) and then differentiating w.r.t y, we get

∂qr
∂y

=
−16σ∗T 3

∞
3k∗

∂2T

∂y2
. (3.18)

Then (3.3) gets the following form.

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

16σ∗T 3
∞

3(ρcp)nfk∗
∂2T

∂y2
+

µnf
(ρcp)nf

(
∂u

∂y

)2

. (3.19)

Let ψ be the stream function satisfying the continuity equation in the following sense.

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.20)

For the conversion of the mathematical model (3.1)-(3.4) into the dimensionless form,

the following similarity transformation has been introduced.

η = y

√
a

2νfL
e
x
2L ,

ψ =
√

2aLνff(η)e
x
2L ,

θ(η) =
T − T∞
Tw − T∞

,

h(η) =
C − C∞
Cw − C∞

.
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The detailed procedure for the conversion of (3.1)-(3.4) has been described in the

upcoming discussion.

• u =
∂ψ

∂y

=
∂ψ

∂η

∂η

∂y

=
√

2aνfLe
x
2Lf ′(η)

√
a

2νfL
e
x
2L

=

√
2a2Lνf
2νfL

e
2x
2Lf ′(η) = ae

x
Lf ′(η).

• ∂u

∂x
=

∂

∂x

(
ae

x
Lf ′(η)

)
= a

(
∂f ′(η)

∂η
.
∂η

∂x
.e

x
L + f ′(η).

∂

∂x
(e

x
L )

)
= a

(
f ′′(η).y

√
a

2νfL
e
x
2L .

1

2L
e
x
L +

1

L
.f ′(η)e

x
L

)
= a

(
ηf ′′(η)

2L
+
f ′(η)

L

)
e
x
L

=
ae

x
L

2L

(
ηf ′′(η) + 2f ′(η)

)
. (3.21)

• v = −∂ψ
∂x

= − ∂

∂x

(√
2aLνff(η)e

x
2L

)
= −

√
2aLνf

(
∂f(η)

∂x
e
x
2L + f(η)

∂

∂x
e
x
2L

)
= −

√
2aLνf

(
∂f(η)

∂η
.
∂η

∂x
.e

x
2L + f(η)e

x
2L .

1

2L

)
= −

√
2aLνf

(
f ′(η)y

√
a

2νfL
e
x
2L e

x
2L

1

2L
+

1

2L
f(η)e

x
2L

)
= −

√
2aLνf

(
ηf ′(η)e

x
2L .

1

2L
+

1

2L
f(η)e

x
2L

)
= −

√
2aLνf

e
x
2L

2L

(
ηf ′(η) + f(η)

)
.

• ∂v

∂y
= −

√
2aLνf

(
∂

∂y
(ηf ′(η)) +

∂f(η)

∂y

)
1

2L
e
x
2L
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= −
√

2aLνf

(
∂η

∂y
f ′(η) +

∂f ′(η)

∂η
.
∂η

∂y
.η +

∂f(η)

∂η

∂η

∂y

)
1

2L
e
x
2L

= −
√

2aLνf

2L
.

√
a

2Lνf

(
f ′(η) + ηf ′′(η) + f ′(η)

)
e
x
2L .e

x
2L

= −ae
x
L

2L

(
ηf ′′(η) + 2f ′(η)

)
. (3.22)

Though the continuity equation (3.1) is already satisfied by the choice of the stream

function ψ in (3.20), it can again be verified by using (3.21) and (3.22) in it as follows.

∂u

∂x
+
∂v

∂y
=

a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L − a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L = 0.

Now we include below the procedure for the conversion of (3.2) into the dimensionless

form.

• ∂u

∂y
= ae

x
L
∂f ′

∂η
.
∂η

∂y

= ae
x
Lf ′′(η).

√
a

2Lvf
e
x
2L

= a

√
a

2Lνf
e

3x
2Lf ′′(η).

• u
∂u

∂x
=

(
ae

x
Lf ′(η)

)
.
a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L

=
a2e

2x
L

2L

(
ηf ′(η)f ′′(η) + 2f ′

2

(η)

)
. (3.23)

• v
∂u

∂y
=

(
−
√

2aLνf

2L
e
x
2Lηf ′(η) + f(η)

)
.

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)
= −a

√
2aLνf

2L
.

√
a

2Lνf
e
x
2L e

3x
2L

(
ηf ′(η)f ′′(η) + f(η)f ′′(η)

)
= − a

2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
. (3.24)

Using (3.23) and (3.24), the left side of (3.2) becomes.

u
∂u

∂x
+ v

∂u

∂y
=
a2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + 2f ′

2

(η)

)
− a2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
=
a2e

2x
L

2L

(
2f ′

2

(η)− f ′′(η)f(η)

)
.
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To convert the right side of Eq. (3.2) into the dimensionless form, the following

procedure has been followed.

• U∞
dU∞
dx

= ae
x
L
d

dx

(
ae

x
L

)
= ae

x
L

1

L
ae

x
L

=
a2e

2x
L

L
. (3.25)

• ∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
=

∂

∂y

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)
= a

√
a

2Lνf
e

3x
2L
∂f ′′

∂η
.
∂η

∂y
= a

√
a

2Lνf
e

3x
2Lf ′′′(η)

√
a

2Lνf
e
x
2L

=
a2e

2x
L

2Lνf
f ′′′(η).

• νnf
∂2u

∂y2
=
µnf
ρnf

(
∂2u

∂y2

)
=

µf

(1− φ)2.5
(
(1− φ)ρf + φρs

)(a2e 2x
L

2νfL
f ′′′(η)

)
=

µfa
2e

2x
L

µf
ρf
.2L(1− φ)2.5ρf

(
1− φ+ φρs

ρf

)f ′′′(η)

(
∵ νf =

µf
ρf

)

=
a2e

2x
L

2L(1− φ)2.5
(
1− φ+ φρs

ρf

)f ′′′(η). (3.26)

• νnf
k

(U∞ − u) =
µf

koe
−x
L (1− φ)2.5

(
(1− φ)ρf + φρs

)(ae xL − ae xLf ′(η)

)

=
νfρf

ρfko(1− φ)2.5
(
1− φ+ φ ρs

ρf

)ae xL .e xL (1− f ′(η))

(
∵ νf =

µf
ρf

)

=
aνfe

2x
L

ko(1− φ)2.5
(
1− φ+ φ ρs

ρf

)(1− f ′(η)

)
. (3.27)

• σB2

ρnf
(U∞ − u) =

σ(Boe
x
2L )2

(1− φ)ρf + φρs

(
ae

x
L − ae

x
Lf ′(η)

)
=

σBo
2(e

x
2L )2

(1− φ)ρf + φρs
ae

x
L

(
1− f ′(η)

)
=

σBo
2ae

2x
L

ρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)
. (3.28)
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Using (3.25) - (3.28) in the right side of (3.2), we get

U∞
dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

ρnf
(U∞ − u)

=
a2e

2x
L

L
+

a2e
2x
L f ′′′(η)

2L(1− φ)2.5
(
1− φ+ φρs

ρf

)
+

νf

ko(1− φ)2.5
(
1− φ+ φ ρs

ρf

)ae 2x
L

(
1− f ′(η)

)

+
σBo

2ae
2x
L

ρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)
.

Hence the dimensionless form of (3.2) becomes:

a2e
2x
L

2L

(
2f ′

2

(η)− f ′′(η)f(η)

)
=
a2e

2x
2L

2L

[
2 +

1

(1− φ)2.5
(
1− φ+ φρs

ρf

)f ′′′(η)

+
2Lνf

ako(1− φ)2.5
(
1− φ+ φ ρs

ρf

)(1− f ′(η)

)
+

2LσBo
2

aρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)]
⇒ 2f ′

2

(η)− f(η)f ′′(η) = 2 +
f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ako(1− φ)2.5(1− φ+ φρs
ρf

)
+

2LσBo
2

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ − 2 + 2f ′

2

(η)− f(η)f ′′(η) =
f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ako(1− φ)2.5(1− φ+ φρs
ρf

)
+

2LσBo
2

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)
+ 2(1− f ′2(η)) + f(η)f ′′(η) +

[
1

(1− φ)2.5(1− φ+ φρs
ρf

)

.

(
2Lνf
ako

+
2LσBo

2

aρf
(1− φ)2.5

)(
1− f ′(η)

)]
= 0.

(3.29)
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Now we include below the procedure for the conversion of (3.3) into the dimensionless

form.

• θ(η) =
T − T∞
Tw − T∞

⇒ T = (Tw − T∞)θ(η) + T∞

= (T∞ + T0e
x
2L − T∞)θ(η) + T∞

= T0e
x
2L θ(η).

• ∂T

∂x
= T0

(
θ(η)

∂

∂x
(e

x
2L ) + e

x
2L
∂θ(η)

∂η
.
∂η

∂x

)
=
T0
2L

(
e
x
2L θ(η) + e

x
2L θ′(η)y

√
a

2νfL
e
x
2L

)
=
T0e

x
2L

2L
(θ(η) + ηθ′(η)).

• u
∂T

∂x
= ae

x
Lf ′(η)

T0e
x
2L

2L

(
θ(η) + ηθ′(η)

)
= a

T0
2L
e

3x
2L

(
f ′(η)(θ(η) + ηf ′(η)θ′(η))

)
. (3.30)

• ∂T

∂y
=

∂

∂y

(
T0e

x
2L θ(η)

)
= T0e

x
2L
∂θ(η)

∂η

∂η

∂y

= T0e
x
2L θ′(η)

√
a

2νfL
e
x
2L

= T0
a

2νfL
e
x
L θ′(η).

• v
∂T

∂y
=

(
− 1

2L

√
2aLνfe

x
2L (ηf ′(η) + f(η))

)(
T0e

x
L

√
a

2νfL
θ′(η)

)
= − T0

2L

√
2aLνf

√
a

2aLνf
e
x
2L e

x
L (ηf ′(η) + f(η))θ′(η)

= − T0
2L

√
2a2Lνf
2aLνf

e
3x
2L (ηf ′(η)θ′(η) + f(η)θ′(η))

= −aT0e
3x
2L

2L
(ηf ′(η)θ′(η) + f(η)θ′(η)). (3.31)
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Using (3.30) and (3.31), the left side of (3.3) gets the following form:

u
∂T

∂x
+ v

∂T

∂y
=
aT0e

3x
2L

2L
(f ′(η)θ(η) + ηθ′(η)f ′(η))− aT0e

3x
2L

2L
(ηf ′(η)θ′(η) + f(η)θ′(η))

=
aT0e

3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)
.

To convert the right side of (3.3) into dimensionless form, we proceed as follows.

• ∂2T

∂y2
=

∂

∂y

(
∂T

∂y

)
=

∂

∂y

(
T0

√
a

2νfL
e
x
L θ′(η)

)
= T0

√
a

2νfL
e
x
L
∂θ′

∂η

∂η

∂y
= T0

√
a

2νfL
e
x
L θ′′(η)

√
a

2νfL
e
x
2L

= T0

(√
a

2νfL

)2

e
x
L e

x
2L θ′′(η)

=
aT0

2νfL
e

3x
2L θ′′(η).

• αnf
∂2T

∂y2
=

knf
(ρcp)nf

aT0
2νfL

e
3x
2L θ′′(η). (3.32)

• 1

(ρcp)nf

∂qr
∂y

=
1

(ρcp)nf
.
−16σ∗T 3

∞
3k∗

.
aT0e

3x
2L

2vfL
θ′′(η)

=
−16σ∗T 3

∞
3k∗(ρcp)nf

.
aT0e

3x
2L

2νfL
θ′′(η). (3.33)

• µnf
(ρcp)nf

(
∂u

∂y

)2

=
µnf

(ρcp)nf
a2(e

3x
2L )2

a

2Lνf
f ′′

2

(η). (3.34)

Using (3.32) - (3.34), the dimensionless form of right side (3.3) is as follows.

αnf
∂2T

∂y2
− 1

(ρcp)

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

=
knfT0ae

3x
2L

2νfL(ρcp)nf
θ′′(η) +

16σ∗T 3
∞aToe

3x
L

6k∗νfL(ρcp)nf
θ′′(η)

+
a3(e

3x
2L )2µnf

2Lνf (ρcp)nf
f ′′

2

(η)

=
aT0e

3x
2L

2L

[
knf

νf (ρcp)nf
θ′′(η) +

16σ∗T 3
∞

3k∗νf (ρcp)nf
θ′′(η)

+
µnf (a

2e
3x
2L )

νnfT0(ρcp)nf
f ′′

2

(η)

]
.
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=
aT0e

3x
2L

2L

[(
knf
kf

.
(ρcp)f
(ρcp)nf

.
kf

(ρcp)f

1

νf

)
θ′′(η)

+

(
(ρcp)f
(ρcp)nf

.
kf

(ρcp)fνf

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
µnf
µf

.
(ρcp)f
(ρcp)nf

.
µf

(ρcp)f

(a2e
3x
2L )

T0νf
f ′′

2

(η)

]
.

=
aT0e

3x
2L

2L

[(
knf
kf

.
1(

1− φ+ φ(ρcp)s
(ρcp)f

) .αf
νf

)
θ′′(η)

(
∵ αf =

kf
(ρcp)f

)
+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) .αf
νf

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

(
∵ αf =

kf
(ρcp)f

)

+
1

(1− φ)2.5
(
1− φ+ φ(ρcp)s

(ρcp)f

) .µf
ρf
.

1

νf

(a2e
3x
2L )

T0(cp)f
f ′′

2

(η)

]
.

=
aT0e

3x
2L

2L

[(
knf
kf

.
1(

1− φ+ φ(ρcp)s
(ρcp)f

) . 1

Pr

)
θ′′(η)

(
∵ Pr =

νf
αf

)
+

(
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

(
∵ Pr =

νf
αf

)

+
1

(1− φ)2.5(1− φ+ φ(ρcp)s
(ρcp)f

)

(ae
x
L )2

Tw − T∞(cp)f
f ′′

2

(η)

]
. (3.35)(
∵ µf = ρfνf , T0 =

Tw − T∞
e
x
2L

)

Therefore the dimensionless form of (3.3) becomes:

aT0e
3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)
=
aT0e

3x
2L

2L

[(
knf
kf

.
1

1− φ+ φ(ρcp)s
(ρcp)f

.
1

Pr

)
θ′′(η)

+

(
1

1− φ+ φ(ρcp)s
(ρcp)f

.
1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
(U∞)2f ′′

2
(η)

(1− φ)2.5
(
1− φ+ φ(ρcp)s

(ρcp)f
)(Tw − T∞)(cp)f

]
.
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⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

.
1

1− φ+ φ(ρcp)s
(ρcp)f

)
θ′′(η)

+

(
1

1− φ+ φ(ρcp)s
(ρcp)f

.
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
Pr

(1− φ)2.5
(
1− φ+ φ(ρcp)s

(ρcp)f

) (U∞)2f ′′
2
(η)

(Tw − T∞)(cp)f

]
⇒

(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1

1− φ+ φ(ρcp)s
(ρcp)f

[(
knf
kf

)
θ′′(η)

+

(
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2

(η)

]
.

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1

(1− φ+ φ(ρcp)s
(ρcp)f

)

[(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2

(η)

]
.

⇒
(

1− φ+
φ(ρcp)s
(ρcp)f

)(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

Tw − T∞(cp)f
f ′′

2

(η)

]
.

⇒
(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η) + Pr

(
1− φ+

φ(ρcp)s
(ρcp)f

)
(−f ′(η)θ(η) + f(η)θ′(η))

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2

(η) = 0.

Now, we include below the procedure for the conversion (3.4) into the dimensionless

form .

• h(η) =
C − C∞
Cw − C∞

⇒ C = h(η)(Cw − C∞) + C∞

= h(η)(C∞ + C0e
x
2L − C∞) + C∞

= C0e
x
2Lh(η) + C∞.
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• ∂C

∂x
= h(η)

∂

∂x
(C0e

x
2L )

= C0
e
x
2L

2L
h(η) + C0e

x
2L
∂h(η)

∂η

∂η

∂x

= C0
e
x
2L

2L
h(η) + C0e

x
2Lh′(η)y

√
a

2Lνf

e
x
2L

2L

=
C0

2L
e
x
2L

(
h(η) + ηh′(η)

)
.

• u∂C
∂x

= af ′(η)e
x
L
C0

2L
e
x
2L (h(η) + ηh′(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η) + ηh′(η)f ′(η)). (3.36)

• ∂C

∂y
= C0e

x
2L
∂h(η)

∂η

∂η

∂y

= C0e
x
2Lh′(η)

√
a

2Lνf
e
x
2L

= C0

√
a

2Lνf
e
x
Lh′(η).

• v∂C
∂y

= −
√

2aLνf
e
x
2L

2L

(
ηf ′(η) + f(η)

)
C0

√
a

2Lνf
e
x
Lh′(η)

= −C0
ae

3x
2L

2L
(ηh′(η)f ′(η) + h′(η)f(η)). (3.37)

Using (3.39)and (3.40) in the left side of (3.4), we get

u
∂C

∂x
+ v

∂C

∂y
=
C0ae

3x
2L

2L
(f ′(η)h(η) + ηh′(η)f ′(η)− ηh′(η)f ′(η)− h′(η)f(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η)− h′(η)f(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η)− h′(η)f(η)). (3.38)

To convert the right side of (3.4) into the dimensionless form, we proceed as follows.

• ∂2C

∂y2
=

∂

∂y

(√
a

2aLνf
C0e

x
Lh′(η)

)
=

(
C0e

x
L

√
a

2Lνf

∂h′(η)

∂η

∂η

∂y

)
= C0e

x
L

√
a

2aLνf
h′′(η)

√
a

2Lνf
e
x
2L
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= C0e
x
L e

x
2L

a

2Lνf
h′′(η)

= C0
ae

3x
2L

2Lνf
h′′(η). (3.39)

• h(η) =
C − C∞
Cw − C∞

⇒ (C − C∞) = h(η)(Cw − C∞)

⇒ K(C − C∞) = K0e
x
Lh(η)(C∞ + C0e

x
2L − C∞)

= C0K0e
3x
2Lh(η). (3.40)

Using (3.36) and (3.37) in the right side of (3.4), we get

D
∂2C

∂y2
−K(C − C∞) = DC0

ae
3x
2L

2Lvf
h′′(η)− C0K0e

3x
2Lh(η)

= C0e
3x
2L

(
D

a

2Lνf
h′′(η)−K0h(η)

)
. (3.41)

Hence the dimensionless form of (3.4) becomes:

C0
ae

3x
2L

2L

(
f ′(η)h(η)− h′(η)f(η)

)
= C0e

3x
2L

(
Dah′′(η)

2Lνf
−K0h(η)

)
⇒ a

2L
(f ′(η)h(η)− h′(η)f(η)) =

aD

2Lνf
h′′(η)−K0h(η)

⇒ f ′(η)h(η)− h′(η)f(η) =
D

νf
h′′(η)− 2LK0

a
h(η)

⇒ νf
D

(f ′(η)h(η)− h′(η)f(η)) = h′′(η)− 2LK0νf
aD

h(η)

⇒ νf
D

(f ′(η)h(η)− h′(η)f(η) +
2LK0νf

a
h(η)) = h′′(η)

⇒ h′′(η) +
νf
D

(f(η)h′(η)− f ′(η)h(η)− 2LK0νf
a

h(η)) = 0.
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The final dimensionless form of the governing model, is:

1

(1− φ)2.5(1− φ+ φ ρs
ρf

)
f ′′′ + ff ′′ + 2(1− f ′2)

+
1

(1− φ)2.5(1− φ+ φ ρs
ρf

)
(P + (1− φ)2.5M)(1− f ′) = 0, (3.42)(

knf
kf

+R

)
θ′′ + Pr

(
1− φ+ φ

(ρcp)s
(ρcp)f

)
(fθ′ − f ′θ) +

1

(1− φ)2.5
PrEcf

′′2 = 0, (3.43)

h′′ + Sc(fh′ − f ′h− γh) = 0. (3.44)

The associated boundary conditions (3.5) - (3.6) get the form:

f = 0, f ′ = 0, θ = 1, h = 1, at η = 0. (3.45)

f ′ → 1, θ → 0, h→ 0 as η →∞. (3.46)

Different parameters used in the above equations have the following formulations:

P =
2Lνf
ak0

, M =
2σB2

0L

aρf
, R =

16σ∗T 3
∞

3kkf
, Sc =

νf
D
,

γ =
2LK0

a
, Pr =

νf
αf
, Ec =

U2
∞

(cp)f (Tw − T∞)
. (3.47)

The skin friction coefficient, is defined as:

Cfx =
2τw
ρfU2

∞
(3.48)

• ∂u
∂y

= a

√
a

2Lνf
e
x
L e

x
2Lf ′′(η).

⇒
(
∂u

∂y

)∣∣∣∣
y=0

= a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0)

• τw = µnf

(
∂u

∂y

)∣∣∣∣
y=0

.

=
µf

(1− φ)2.5
a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0). (3.49)
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Using (3.49) in equation (3.48) ,we get the following form.

Cfx =
2

ρfU2
∞

µf
(1− φ)2.5

a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0)

=
2

U2
∞

νf
(1− φ)2.5

a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0) ∴ νf =

µf
ρf

=

√
2νfa

L

1

(U∞)2
U∞e

x
2L

f ′′(0)

(1− φ)2.5
∴ U∞ = ae

x
L

=

√
2νf
L

1

U∞
(e

x
L )

1
2

f ′′(0)

(1− φ)2.5

=

√
2νf
LU∞

(e
x
L )

1
2

f ′′(0)

(1− φ)2.5

=

√
x
L√

xU∞
2νf

.
f ′′(0)

(1− φ)2.5

=

√
x
L√
Rex
2

.
f ′′(0)

(1− φ)2.5

⇒
Cfx

√
Rex
2√

x
L

=
f ′′(0)

(1− φ)2.5
,

The local Nusselt number is defined as:

Nux =
−xqw

kf (Tw − T∞)
(3.50)

• qw = −knf
(
∂T

∂y

)∣∣∣∣
y=0

= −knfT0
a

2νfL
e
x
L θ′(0) (3.51)

Using (3.51) in (3.50), we get the following form.

Nux = −
xknf (Tw − T∞) a

2νfL
e
x
L θ′(0)

kfe
x
2L (Tw − T∞)

∵ T0 =
(Tw − T∞)

e
x
2L

= −
xknf

a
2νfL

(e
x
L )

1
2 θ′(0)

kf

(3.52)
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= −
xknf

xae
x
L

2xνfL
θ′(0)

kf

= −
√

x

2L

knf
kf

√
Rexθ

′(0)

= −
√

x

2L

knf
kf

√
Rexθ

′(0) ∵ Rex =
xU∞
νf

⇒
√

2L

x

√
1

Rex
Nux = −knf

kf
θ′(0),

The local sherwood number is defined as:

Shx =
xqm

D(Cw − C∞)
(3.53)

• qm = −D
(
∂C

∂y

)∣∣∣∣y=0

= −DC0

√
a

2Lνf
e
x
Lh′(0) (3.54)

Using (3.54) in (3.53) we get:

Shx =
−xDC0

√
a

2Lνf
e
x
Lh′(0)

D(Cw − C∞)

=
−xC0

√
a

2Lνf
e
x
Lh′(0)

(Cw − C∞)

=
−xC0

√
a

2Lνf
e
x
Lh′(0)

(Cw − Cw + C0e
x
2L )

∴ C∞ = Cw − C0e
x
2L

=
−x
√

a
2Lνf

e
x
Lh′(0)

−e x
2L

=
x
√

a
2Lνf

e
x
Lh′(0)

(e
x
L )

1
2

= x

√
a

2Lνf
e
x
Lh′(0)(e

x
L )
−1
2

= x

√
a

2Lνf
h′(0)(e

x
L )

1
2

= x

√
ae

x
L

2Lνf
h′(0)
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= x

√
xU∞
x2Lνf

h′(0)

=

(√
xU∞
νf

)(
x

√
1

x2L
h′(0)

)
=
√
Rex

√
x

2L
h′(0)

⇒ Shx

√
1

Rex

√
2L

x
= h′(0),

where τw is the skin fraction, qw the heat flux from the sheet, and Rex represents the

local Reynolds numbers defined as Rex = xU∞
vf
.

3.3 Solution methodology

In order to solve the system of ordinary differential equations(3.42)-(3.44) the shooting

method has been used . Let us use the notations:

f = y1, θ = y4, h = y6.

Further denote

f ′ = y′1 by y2, f
′′ = y2

′ by y3, θ
′ = y′4 by y5 and h′ = y6

′ by y7.

For simplification, the following notations have been opted.



(1− φ)2.5(1− φ+ φ ρs
ρf

) = b1,

P + (1− φ)2.5M = b2,

Pr

(
1−φ+φ

(
φ(ρcp)s
(ρcp)f

))(
knf
kf

+R
) = b3

(1−φ)2.5
PrEc

(knf
kf

+R
)

= b4
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The system of equations (3.41)-(3.43), can now be written in the form of following first

ODEs

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− b2(1− y2), y3(0) = s,

y′4 = y5, y4(0) = 1,

y′5 = b3(y2y4 − y1y5)− b4y23, y5(0) = t,

y′6 = y7, y6(0) = 1,

y′7 = Sc(γy6 + y2y6 − y1y7), y7(0) = w.

The above initial value problem will be solved numerically by the RK-4 method. To

get the approximate solution, the domain of the problem has been taken as [0, η∞]

instead of [0, ∞], where η∞ is an appropriate finite positive real number. In the above

system of equations, the missing conditions s, t and w are to be chosen such that

y2(η∞, s, t, w) = 1, y4(η∞, s, t, w) = 0, y6(η∞, s, t, w) = 0.

To solve the above system of algebraic equations, we use the Newton’s method which

has the following iterative scheme:


s(k+1)

t(k+1)

w(k+1)

 =


s(k)

t(k)

w(k)

−


∂y2
∂s

∂y2
∂t

∂y2
∂w

∂y4
∂s

∂y4
∂t

∂y4
∂w

∂y6
∂s

∂y6
∂t

∂y6
∂w


−1

(s(k),t(k),w(k))


y
(k)
2 − 1

y
(k)
4

y
(k)
6


(s(k),t(k),w(k))

.

For further need, the following notations have been introduced.

∂y1
∂s

= y8,
∂y2
∂s

= y9, ...,
∂y7
∂s

= y14,

∂y1
∂t

= y15,
∂y2
∂t

= y16, ...,
∂y7
∂t

= y21,

∂y1
∂w

= y22,
∂y2
∂w

= y23, ...,
∂y7
∂w

= y28.
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As a result of these these new notations, the Newton’s iterative scheme gets the form:


s(k+1)

t(k+1)

w(k+1)

 =


s(k) − 1

t(k)

w(k)

−

y9 y16 y23

y11 y18 y25

y13 y20 y27


−1

(s(k),t(k),w(k))


y
(k)
2 − 1

y
(k)
4

y
(k)
6


(s(k),t(k),w(k))

.

(3.55)

Now differentiate the above system of seven first order ODEs with respect to each of

the variables s, t and w to have another system of twenty one ODEs. Writing all these
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twenty eight ODEs together, we have the the following IVP:

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− b2(1− y2), y3(0) = s,

y′4 = y5, y4(0) = 1,

y′5 = b3(y2y4 − y1y5)− b4y23, y5(0) = t,

y′6 = y7, y6(0) = 1,

y′7 = Sc(γy6 + y2y6 − y1y7), y7(0) = w,

y′8 = y9, y8(0) = 0,

y′9 = y10, y9(0) = 0,

y′10 = −b1(y1y10 + y8y3 − 4y2y9) + b2y9, y10(0) = 1,

y′11 = y12, y11(0) = 0,

y′12 = b3(y2y11 + y9y4 − y1y12 − y8y5)− 2b4y3y10, y12(0) = 0,

y′13 = y14, y13(0) = 0,

y′14 = Sc(γy13 + y2y13 + y6y9 − y21y7 − y1y14), y14(0) = 0,

y′15 = y16, y15(0) = 0,

y′16 = y17, y16(0) = 0,

y′17 = −b1(y1y17 + y15y3 − 4y2y16) + b2y16, y17(0) = 0,

y′18 = y19, y18(0) = 0,

y′19 = b3(y2y18 + y16y4 − y1y19 − y15y5)− 2b4y3y17, y19(0) = 1,

y′20 = y21, y20(0) = 0,

y′21 = Sc(γy20 + y2y20 + y6y16 − y1y21 − y7y15), y21(0) = 0,

y′22 = y23, y22(0) = 0,

y′23 = y24, y23(0) = 0,

y′24 = −b1(+y1y24 + y22y3 − 4y2y23) + b2y23, y24(0) = 0,

y′25 = y26, y25(0) = 0,

y′26 = b3(y2y25 + y23y4 − y1y26 − y22y5)− 2b4y3y24, y26(0) = 0,

y′27 = y28 y27(0) = 0,

y′28 = Sc(γy27 + y2y27 + y23y6 − y1y28 − y22y7), y28(0) = 1.
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The fourth order Runge-Kutta method is used to solve the above system of twenty

eight equations with initial guesses s, t, w. These guesses are updated by the New-

ton’s scheme (3.51). The iterative process is repeated until the following criteria is met:

max|y2(η∞ − 1)|,max|y4(η∞ − 0)|,max|y6(η∞ − 0)| < ε,

where ε > 0 is the tolerance. For all the calculations in this chapter, we have set

ε = 10−6.

3.4 Results with discussion

In this section, the numerical results have been displayed in the form of graphs and

tables. For numerical calculations, different physical properties of water, copper and

alumina are considered. The effects of various parameters such as nanoparticles vol-

ume fraction φ, Prandtal number Pr, chemical reaction γ, permeability parameter P ,

Magnetic parameter M , on velocity f ′, temperature θ and concentration h have been

analyzed. Figures 4.2 and 4.3 demonstrate the impact of the volume fraction and the

magnetic parameter M on the velocity . In these figures, we observe that the velocity

increases with an increase in the volume fraction of nanoparticles. These figures show

that the hydrodynamic boundary layer of Al2O3- water is thick as compared with that

of Cu-water.

Figures 3.4 and 4.5 display the effect of the solid volume fraction of nanoparticles

on the temperature profile. In these figure, we observe that if we increase the volume

fraction φ, the temperature profile has also an increasing trend. Hence the thick-

ness of the thermal boundary layer increases. Figures 4.6 and 4.7 show the impact of

the volume fraction φ together with the magnetic parameter M on the concentration

profile h. A decreasing behaviour is found in the dimensionless concentration h for

both Cu-water and Al2O3 -water. In these figure, one can see that the concentra-

tion distribution decreases if there is an increase in the volume fraction φ. Figures
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4.8 and 4.9 show the impact of the permeability parameter P together with φ on the

dimensionless velocity for both Cu-water and Al2O3-water. Fluid velocity increases

with the increasing values of both the permeability parameter P and φ . Figure 3.10

and 3.11 show the impact of the volume fraction φ and permeability parameters P of

nano-particles on the dimensionless temperature θ. When the porosity increases the

thermal boundary layer is reduced. It is clearly observed that the temperature profile

increases by increasing the volume fraction in the state of increased porosity. If we

increase the value of the permeability parameter effect, the temperature distribution

is also increased. Figures 4.12 and 4.13 show the effect of φ on the dimensionless

temperature θ of the water based fluid with or without radiation. In these figures,

temperature is increased by increasing the values of the thermal radiation radiation

increased. It happens because the thermal radiation increases the thermal diffusion.

Figures 3.14 and 3.15 show the impact of the viscous dissipation together with φ

on the temperature profile. When the value of the viscous dissipation is increased, the

fluid region is allowed to store the energy. As a result of dissipation due to fractional

heating, heat is generated. From this figure, we examine that the value of the thermal

boundary thickness increases with increasing values of φ and it will eventually increase

the temperature. Figures 4.16 and 4.17 show the impact of the chemical reaction to-

gether with φ on the dimensionless concentration. In these figures, it also observed

that when the chemical reaction increases, the concentration profiles decreases and

the increasing values of the volume fraction have small impact on the dimensionless

concentration. It is clear that in these figures velocities f ′(η) and temperature θ(η)

posses the same increasing behaviour for M = 0, 10 and the concentration h(η) shows

the decreasing behaviour.
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Figure 3.15: Impact of φ and Ec on the dimensionless temperature θ for Al2O3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h(
)

Cu-Water

 = 0.0
 = 0.1

 = 0.2
 = 0.0

 = 0.1
 = 0.2

=0

=0.5

Sc = 0.68, Pr = 6.2, Ec = 0.5,P = 5, R = M= 1
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Table 3.1: Physical properties of water and nano-particles

Fluid ρ(kg/m3) cp(J/kgK) K(W/mk) β × 105(K−1)

Pure water 997.1 4179 0.613 21

Copper 8933 385 401 1.67

Alumina 3970 765 40 0.85

Table 3.2: Comparison of skin friction f ′′(0) with Ref [35] when (P = M = R =
Ec)=0, Pr= 6.2 and Sc= 0.68

φ Cu− water Present Result Al2O3 Present Result

Ref[35] Shooting method bvp4c Ref[35] Shooting method bvp4c

0.0 1.6871 1.6871 1.6871 1.6871 1.6871 1.6871

0.1 2.5793 2.5793 2.5793 2.1982 2.1982 2.1982

0.2 3.5902 3.5902 2.8174 2.8174 2.8174

The three physical parameters Cfx (local Skin-friction coefficient), Nux (local Nusselt

number) are of great interest for engineers. Table 3.1 demonstrates the properties

fluid water and nanoparticles. In table 3.2 and 3.3, we compare our results for the

values of local Skin-friction coefficient) f ′′(0) and local Nusselt number) θ′(0) with

those of the previous reported value by F.Mabood et al. Ref [35]. Table 3.2 and 3.3
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Table 3.3: Comparison results of Nusselt θ′(0) with Ref[35] when (P = M = R =
Ec)=0, Pr=6.2 andSc=0.68

φ Cu− water Present Result Al2O3 Present Result

Ref[35] Shooting method bvp4c Ref[35] Shooting method bvp4c

0.0 1.7148 1.7148 1.7148 1.7148 1.7242 1.7242

0.1 2.1357 2.1357 2.1357 2.0231 2.0231 2.0231

0.2 2.5400 2.5400 2.5400 2.3343 2.3343 2.3343

show that the skin friction and local Nusselt number increase by the increasing the

values of φ. The results are observed to be in a very good assention. By increasing the

permeability parameter as well as the Cu-water and Al2o3-water nanoparticles increase

the skin-friction co-efficient.



Chapter 4

Numerical results of Joule heating

in nanofluids

4.1 Introduction

In this chapter we extend the model of Ref [35]by considering the additional effect of

Joule heating . Heat and mass transfer are analyzed for steady, viscous dissipations,

chemical reaction and Joule heating past a porous medium. By using a suitable sim-

ilarity transformation, the nonlinear partial differential equations of momentum and

heat are converted into a system of ordinary differential equations. Numerical solu-

tions are acquired by using the shooting method. The impact of different physical

parameter values is discussed and the results are found to be in excellent agreement

with those of the Matlab bvp4c-built in code. The numerical computed effect of dif-

ferent parameters on the dimensionless velocity, temperature and concentration are

calculated and presented in the form of graphs and tables.

52
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4.2 Problem formulation

Consider a laminar, two-dimensional and time independent flow of a fluid with heat

transfer past a flat permeable plate through a porous medium. The geometry of the

flow model is shown in Figure 4.1.

Assume that the fluid under discussion be taken as viscous, incompressible electrically

Figure 4.1: Geometry for the flow under consideration.

conducting and radiating over a porous medium. The equation of continuity, equation

of momentum , energy equation and the concentration equation describing the two

dimensional flow are given as

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

(ρcp)nf
(U∞ − u), (4.2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

+
σB2

(ρcp)nf
u2, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−K(C − C∞). (4.4)
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The associated boundary conditions for the above system of equations are:

u = v = 0, T = Tw = T∞ + T0e
x
2L , C = Cw = C∞ + C0e

x
2L at y = 0, (4.5)

u→ U∞ = ae
x
L , T → T∞, C → C∞ as y →∞. (4.6)

Here σs is the electrical conductivity of the base-fluid whereas σnf , νnf , ρnf , αnf , knf

are the electric conductivity, the effective viscosity, the effective density, the effective

thermal diffusivity, the thermal conductivity of the nanofluid, respectively. Different

relations of interest have been formulated as:

αnf =
knf

(ρcp)nf
, (4.7)

ρnf = (1− φ)ρf + φρs, (4.8)

µnf =
µf

(1− φ)2.5
, (4.9)

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s, (4.10)

Knf

Kf

=
Ks + 2Kf − 2φ(Kf −Ks)

Ks + 2Kf + 2φ(Kf −Ks)
, (4.11)

σnf = (1− φ)σf + φσs, (4.12)

νf =
µf
ρf
, (4.13)

K = Koe
−x
L , (4.14)

B = Boe
x
2L . (4.15)

The radiative heat flux qr by using the Rosseland approximation for radiation, can be

written as

qr =
−4σ∗

3k∗
∂T 4

∂y
, (4.16)

where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient. If the

temperature difference is very small, then the temperature variety T 4 might be ex-

tended about T∞ in a Taylor series, as follows:
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T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1 +

12T 2
∞

2!
(T − T∞)2 +

24T∞
3!

(T − T∞)3 +
24

4!
(T − T∞)4.

Disregarding the higher order terms,

T 4 = T 4
∞ + 4T 3

∞(T − T∞)

⇒ T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞

⇒ T 4 = 4T 3
∞T − 3T 4

∞

⇒ ∂T 4

∂y
= 4T 3

∞
∂T

∂y
. (4.17)

Using (4.17) in (4.16) and then differentiating w.r.t y, we get

∂qr
∂y

=
−16σ∗T 3

∞
3k∗

∂2T

∂y2
. (4.18)

Then (4.3) gets the following form.

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

16σ∗T 3
∞

3(ρcp)nfk∗
∂2T

∂y2
+

µnf
(ρcp)nf

(
∂u

∂y

)2

. (4.19)

Let ψ be the stream function satisfying the continuity equation in the following sense.

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (4.20)

For the conversion of the mathematical model (3.1)-(3.4) into the dimensionless form,

the following similarity transformation has been introduced.

η = y

√
a

2vfL
e
x
2L , (4.21)

ψ = y
√

2aLvff(η)e
x
2L , (4.22)

θ(η) =
T − T∞
Tw − T∞

, (4.23)

h(η) =
C − C∞
Cw − C∞

. (4.24)
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The detailed procedure for the conversion of (4.1)-(4.4) has been described in the

upcoming discussion.

• u =
∂ψ

∂y

=
∂ψ

∂η

∂η

∂y

=
√

2aνfLe
x
2Lf ′(η)

√
a

2νfL
e
x
2L

=

√
2a2Lνf
2νfL

e
2x
2Lf ′(η) = ae

x
Lf ′(η).

• ∂u

∂x
=

∂

∂x

(
ae

x
Lf ′(η)

)
= a

(
∂f ′(η)

∂η
.
∂η

∂x
.e

x
L + f ′(η).

∂

∂x
(e

x
L )

)
= a

(
f ′′(η).y

√
a

2νfL
e
x
2L .

1

2L
e
x
L +

1

L
.f ′(η)e

x
L

)
= a

(
ηf ′′(η)

2L
+
f ′(η)

L

)
e
x
L

=
a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L (4.25)

• v = −∂ψ
∂x

= − ∂

∂x

(√
2aLνff(η)e

x
2L

)
= −

√
2aLνf

(
∂f(η)

∂x
e
x
2L + f(η)

∂

∂x
e
x
2L

)
= −

√
2aLνf

(
∂f(η)

∂η
.
∂η

∂x
.e

x
2L + f(η)e

x
2L .

1

2L

)
= −

√
2aLνf

(
f ′(η)y

√
a

2νfL
e
x
2L e

x
2L

1

2L
+

1

2L
f(η)e

x
2L

)
(4.26)
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= −
√

2aLνf

(
ηf ′(η)e

x
2L .

1

2L
+

1

2L
f(η)e

x
2L

)
= −

√
2aLνf

e
x
2L

2L

(
ηf ′(η) + f(η)

)
.

• ∂v

∂y
= −

√
2aLνf

(
∂

∂y
(ηf ′(η)) +

∂f(η)

∂y

)
1

2L
e
x
2L

= −
√

2aLνf

(
∂η

∂y
f ′(η) +

∂f ′(η)

∂η
.
∂η

∂y
.η +

∂f(η)

∂η

∂η

∂y

)
1

2L
e
x
2L

= −
√

2aLνf

2L
.

√
a

2Lνf

(
f ′(η) + ηf ′′(η) + f ′(η)

)
e
x
2L .e

x
2L

= − a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L . (4.27)

Though the continuity equation (4.1) is already satisfied by the choice of the stream

function ψ in (4.20), it can again be verified by using (4.21) and (4.22) in it as follows.

∂u

∂x
+
∂v

∂y
=

a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L − a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L = 0.

Now we include below the procedure for conversion of (4.2) into the dimensionless

form.

• ∂u

∂y
= ae

x
L
∂f ′

∂η
.
∂η

∂y

= ae
x
Lf ′′(η).

√
a

2Lvf
e
x
2L

= ae
3x
2Lf ′′(η).

√
a

2Lνf
.

• u
∂u

∂x
=

(
ae

x
Lf ′(η)

)
.
a

2L

(
ηf ′′(η) + 2f ′(η)

)
e
x
L

=
a2

2L

(
ηf ′(η)f ′′(η) + 2f ′

2

(η)

)
e

2x
L . (4.28)

• v∂u
∂y

= −
√

2aLνf

2L

(
ηf ′(η) + f(η)

)
e
x
2L .

(
af ′′(η)

√
a

2Lνf
e

3x
2L

)
.

= −a
√

2aLνf

2L
.

√
a

2Lνf

(
ηf ′(η)f ′′(η) + f(η)f ′′(η)

)
e
x
2L e

3x
2L

= − a
2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
. (4.29)
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Using (4.27) and (4.28), the left side of (4.2) becomes.

u
∂u

∂x
+ v

∂u

∂y
=
a2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + 2f ′

2

(η)

)
− a2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
=
a2e

2x
L

2L

(
2f ′

2

(η)− f ′′(η)f(η)

)
.

To convert the right side of (4.2) into the dimensionless form, the following procedure

has been followed.

• U∞
dU∞
dx

= ae
x
L
d

dx

(
ae

x
L

)
= ae

x
L

1

L
ae

x
L

=
a2e

2x
L

L
. (4.30)

• ∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
=

∂

∂y

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)
= a

√
a

2Lνf
e

3x
2L
∂f ′′

∂η
.
∂η

∂y
= a

√
a

2Lνf
e

3x
2Lf ′′′(η)

√
a

2Lνf
e
x
2L

=
a2e

2x
L

2Lνf
f ′′′(η).

• νnf
∂2u

∂y2
=
µnf
ρnf

(
∂2u

∂y2

)
=

µf

(1− φ)2.5
(
(1− φ)ρf + φρs

)( a2

2νfL
f ′′′(η)e

2x
L

)
=

µfa
2e

2x
L

µf
ρf
.2L(1− φ)2.5ρf

(
1− φ+ φρs

ρf

)f ′′′(η) ∵

(
νf =

µf
ρf

)

=
a2e

2x
L

2L(1− φ)2.5
(
1− φ+ φρs

ρf

)f ′′′(η).
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• νnf
k

(U∞ − u) =
µf

koe
−x
L (1− φ)2.5

(
(1− φ)ρf + φρs

)(ae xL − ae xLf ′(η)

)

=
νfρf

ρfko(1− φ)2.5
(
1− φ+ φ ρs

ρf

)ae xL .e xL (1− f ′(η)) ∵

(
νf =

µf
ρf

)
=

νf

ko(1− φ)2.5
(
1− φ+ φ ρs

ρf

)ae 2x
L

(
1− f ′(η)

)
. (4.31)

• σB2

ρnf
(U∞ − u) =

σ(Boe
x
2L )2

(1− φ)ρf + φρs

(
ae

x
L − ae

x
Lf ′(η)

)
=

σBo
2(e

x
2L )2

(1− φ)ρf + φρs
ae

x
L

(
1− f ′(η)

)
=

σBo
2ae

2x
L

ρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)
. (4.32)

Using (4.29) - (4.31) in the right side of Eq.(4.2), we get

U∞
dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

ρnf
(U∞ − u)

=
a2e

2x
L

L
+

a2e
2x
L f ′′′(η)

2L(1− φ)2.5
(
1− φ+ φρs

ρf

)
+

νf

ko(1− φ)2.5
(
1− φ+ φ ρs

ρf

)ae 2x
L

(
1− f ′(η)

)

+
σBo

2ae
2x
L

ρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)
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Hence the dimensionless form of (4.2) becomes.

a2e
2x
L

2L

(
2f ′

2

(η)− f ′′(η)f(η)

)
=
a2e

2x
2L

2L

[
2 +

1

(1− φ)2.5
(
1− φ+ φρs

ρf

)f ′′′(η)

+
2Lνf

ako(1− φ)2.5
(
1− φ+ φ ρs

ρf

)(1− f ′(η)

)
+

2LσBo
2

aρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)]
⇒ 2f ′

2

(η)− f(η)f ′′(η) = 2 +
f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ako(1− φ)2.5(1− φ+ φρs
ρf

)
+

2LσBo
2

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ − 2 + 2f ′

2

(η)− f(η)f ′′(η) =
f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ako(1− φ)2.5(1− φ+ φρs
ρf

)
+

2LσBo
2

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)
+ 2(1− f ′2(η)) + f(η)f ′′(η) +

1

(1− φ)2.5(1− φ+ φρs
ρf

)(
2Lνf
ako

+
2LσBo

2

aρf
(1− φ)2.5

)(
1− f ′(η)

)
= 0

(4.33)

Now we include below the procedure for conversion of (4.3) into the dimensionless

form.

• θ(η) =
T − T∞
Tw − T∞

⇒ T = (Tw − T∞)θ(η) + T∞

= (T∞ + T0e
x
2L − T∞)θ(η) + T∞

= (T0e
x
2L )θ(η)

• ∂T

∂x
= T0

(
∂

∂x
(e

x
2L )θ(η) + e

x
2L
∂θ(η)

∂η
.
∂η

∂x

)
=
T0
2L

(
e
x
2L θ(η) + e

x
2L θ′(η)y

√
a

2νfL
e
x
2L

)
=
T0e

x
2L

2L
(θ(η) + ηθ′(η))
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• u
∂T

∂x
= ae

x
Lf ′(η)

T0e
x
2L

2L

(
θ(η) + ηθ′(η)

)
= a

T0
2L
e

3x
2L

(
f ′(η)(θ(η) + ηf ′(η)θ′(η))

)
(4.34)

• ∂T

∂y
=

∂

∂y

(
(T0e

x
2L )θ(η)

)
= (T0e

x
2L )

∂θ(η)

∂η

∂η

∂y

= (T0e
x
2L )θ′(η)

√
a

2νfL
e
x
2L

= T0e
x
L

√
a

2νfL
θ′(η)

• v
∂T

∂y
=

(
− 1

2L

√
2aLνf (ηf

′(η) + f(η))e
x
2L

)(
T0e

x
L θ′(η)

√
a

2νfL

)
= − 1

2L

√
2aLνf

√
a

2aLνf
(ηf ′(η) + f(η))θ′(η)e

x
2L e

x
L

= − 1

2L

√
2a2Lνf
2aLνf

Toe
3x
2L (ηf ′(η)θ′(η) + f(η)θ′(η))

= −aT0e
3x
2L

2L
(ηf ′(η)θ′(η) + f(η)θ′(η)) (4.35)

Using (4.33) and (4.34) the left side of (4.3) gets the following form:

u
∂T

∂x
+ v

∂T

∂y
=
aT0e

3x
2L

2L
(f ′(η)θ(η) + ηθ′(η)f ′(η))− aT0e

3x
2L

2L
(f ′(η)ηθ′(η) + f(η)θ′(η))

=
aT0e

3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)

To convert the right side of (4.3) into dimensionless form we proceed as follows.

• ∂2T

∂y2
=

∂

∂y

(
∂T

∂y

)
=

∂

∂y

(
T0e

x
L

√
a

2νfL
θ′(η)

)
= T0e

x
L

√
a

2νfL

∂θ′

∂η

∂η

∂y
= T0e

x
L

√
a

2νfL
θ′′(η)

√
a

2νfL
e
x
2L

= T0e
x
L e

x
2L

(√
a

2νfL

)2

θ′′(η)
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= T0e
3x
2L

a

2νfL
θ′′(η)

• αnf
∂2T

∂y2
=

knf
(ρcp)nf

T0e
3x
2L

a

2νfL
θ′′(η) (4.36)

• 1

(ρcp)nf

∂qr
∂y

=
1

(ρcp)nf
.
−16σ∗T 3

∞
3k∗

aT0e
3x
L

2vfL
θ′′(η)

=
−16σ∗T 3

∞
3k∗(ρcp)nf

aT0e
3x
L

2νfL
θ′′(η) (4.37)

• µnf
(ρcp)nf

(
∂u

∂y

)2

=
µnf

(ρcp)nf
a2(e

3x
2L )2f ′′2(η).

a

2Lνf
(4.38)

• σB2

(ρcp)nf
u2 =

σ(B0e
x
2L )2

(ρcp)nf

(
ae

x
Lf ′(η)

)2

(4.39)

Using (4.35) - (4.38) the dimensionless form of right side (4.3) is as follows.

αnf
∂2T

∂y2
− 1

(ρcp)

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

+
σB2

(ρcp)nf
u2

=
knfT0ae

3x
2L

2νfL(ρcp)nf
θ′′(η) +

16σ∗T 3
∞aToe

3x
L

3k∗2νfL(ρcp)nf
θ′′(η)

+
a3(e

3x
2L )2µnf

2Lνf (ρcp)nf
f ′′

2

(η) +
σ(B0e

x
2L )2

(ρcp)nf

(
ae

x
Lf ′(η)

)2

=
aT0e

3x
2L

2L

[
knf

νf (ρcp)nf
θ′′ +

16σ∗T 3
∞

νf (ρcp)nf3k∗
θ′′(η)

+
µf (a

3e
3x
L )

νfT0((ρcp)nf )
f ′′

2

(η) +
2Lσ(B0e

x
2L )2

aT0e
3x
2L (ρcp)nf

(U∞)2f ′
2

(η)

]
.

=
aT0e

3x
2L

2L

[(
knf
kf

.
(ρcp)f
(ρcp)nf

.
kf

(ρcp)f

1

νf

)
θ′′(η)

+

(
(ρcp)f
(ρcp)nf

.
kf

(ρcp)fνf

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
µnf
µf

.
(ρcp)f
(ρcp)nf

.
µf

(ρcp)f

(a2e
3x
2L )

T0νf
f ′′

2

(η) +
2Lσ(B0e

x
2L )2

aT0e
3x
2L

(ρcp)f
(ρcp)nf

.
1

(ρcp)f
(U∞)2f ′

2

(η)

]
.

(4.40)



Effect of Joule heating on heat and mass transfer.... 63

=
aT0e

3x
2L

2L

[(
knf
kf

.
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.
αf
νf

)
θ′′(η)

(
∵ αf =

kf
(ρcp)f

)
+

(
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

kf
(ρcp)fνf

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

(
∵ αf =

kf
(ρcp)f

)

+
1

(1− φ)2.5(1− φ+ φ(ρcp)s
(ρcp)f

)
.
µf
ρf
.

1

νf

(a2e
3x
2L )

T0(cp)f
f ′′

2

(η)

+
2Lσ(B0e

x
2L )2

aT0e
3x
2L

1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

(ρcp)f
(U∞)2f ′

2

(η)

]
.

=
aT0e

3x
2L

2L

[(
knf
kf

.
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

Pr

)
θ′′(η)

(
∵ Pr =

νf
αf

)
+

(
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

(
∵ Pr =

νf
αf

)

+
1

(1− φ)2.5(1− φ+ φ(ρcp)s
(ρcp)f

)

(ae
x
L )2

(Tw − T∞(cp)f )
f ′′

2

(η)

+
2Lσe

x
2L (B0e

x
2L )2

a(Tw − T∞)e
3x
2L

1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

(ρcp)nf
(U∞)2f ′

2

(η)

]
. (4.41)(

∵ µf = ρfνf , T0 =
Tw − T∞
e
x
2L

)

Therefore the dimensionless form of (4.3) becomes:

aT0e
3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)
=
aT0e

3x
2L

2L

[(
knf
kf

.
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

Pr

)
θ′′(η)

+

(
1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.

1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5(1− φ+ φ(ρcp)s
(ρcp)f

)

(U∞)2f ′′
2
(η)

Tw − T∞(cp)f

+
2Lσ(B0)

2

aPr(Tw − T∞)

(U∞)2f ′
2
(η)

(1− φ+ φ(ρcp)s
(ρcp)f

)(ρcp)f

]
.
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⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

.
1

(1− φ+ φ(ρcp)s
(ρcp)f

)

)
θ′′(η)

+

(
1

(1− φ+ φ(ρcp)s
(ρcp)f

)

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
Pr

(1− φ)2.5
(
1− φ+ φ(ρcp)s

(ρcp)f

) (U∞)2f ′′
2
(η)

(Tw − T∞)(cp)f

]

+
2Lσ(B0)

2

a(Tw − T∞)

1

(1− φ+ φ(ρcp)s
(ρcp)f

)
.
Pr(U∞)2f ′

2
(η)

(ρcp)f

]
⇒

(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1

(1− φ+ φ(ρcp)s
(ρcp)f

)

[(
knf
kf

)
θ′′(η) +

(
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
Pr

(1− φ)2.5
(a2e

2x
L )

Tw − T∞(cp)f
f ′′

2

(η)

+
2Lσ(B0)

2

a(Tw − T∞)

Pr
ρf (cp)f

(U∞)2f ′
2

(η)

]
.

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1

(1− φ+ φ(ρcp)s
(ρcp)f

)

[(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
Pr

(1− φ)2.5
(U∞)2

(Tw − T∞)(cp)f
f ′′

2

(η)

+
2Lσ(B0)

2

aρf
.Pr

(U∞)2

(Tw − T∞)(cp)f
f ′

2

(η)

]
.

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr(1− φ+

φ(ρcp)s
(ρcp)f

) =

[(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
(η)Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2

(η)

+
2Lσ(B0)

2

aρf
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′

2

(η)

]
.

⇒
(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η) + Pr(1− φ+

φ(ρcp)s
(ρcp)f

)(−f ′(η)θ(η) + f(η)θ′(η))

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2

(η) +
2Lσ(B0)

2

aρf
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′

2

(η) = 0.
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Now we include below the procedure for conversion equation (4.4) into the dimension-

less form .

• h(η) =
C − C∞
Cw − C∞

⇒ C = h(η)(Cw − C∞) + C∞

= h(η)(C∞ + C0e
x
2L − C∞) + C∞

= C0e
x
2Lh(η) + C∞.

• ∂C

∂x
= h(η)

∂

∂x
C0e

x
2L

= C0
e
x
2L

2L
h(η) + C0e

x
2L
∂h(η)

∂η

∂η

∂y

= C0
e
x
2L

2L
h(η) + C0e

x
2Lh′(η)y

√
a

2Lνf

e
x
2L

2L

=
C0

2L
e
x
2L

(
h(η) + ηh′(η)

)
.

• u
∂C

∂x
= af ′(η)e

x
L
C0

2L
e
x
2L (h(η) + ηh′(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η) + ηh′(η)f ′(η)). (4.42)

• ∂C

∂y
= C0e

x
2L
∂h(η)

∂η

∂η

∂y

= C0e
x
2Lh′(η)

√
a

2Lνf
e
x
2L

= C0e
x
Lh′(η)

√
a

2Lνf
.

• v
∂C

∂y
= −

√
2aLνf

e
x
2L

2L

(
ηf ′(η) + f(η)

)
C0e

x
Lh′(η)

√
a

2Lνf

= −C0
ae

3x
2L

2L
(ηh′(η)f ′(η) + h′(η)f(η)). (4.43)

Using Eqs (4.41)and (4.42) in left side of (4.4)

u
∂C

∂x
+ v

∂C

∂y
=
C0ae

3x
2L

2L
(f ′(η)h(η) + ηh′(η)f ′(η)− ηh′(η)f ′(η)− h′(η)f(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η)− h′(η)f(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η)− h′(η)f(η)). (4.44)
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To convert the right side of (4.4) into dimensionless form we proceed as follows.

• ∂2C

∂y2
=

∂

∂y

(√
a

2aLνf
C0e

x
Lh′(η)

)
=

(
C0e

x
L

√
a

2Lνf

∂h′(η)

∂η

∂η

∂y

)
= C0e

x
L

√
a

2aLνf
h′′(η)

√
a

2Lνf
e
x
2L

= C0e
x
L e

x
2L

a

2Lνf
h′′(η)

= C0
ae

3x
2L

2Lνf
h′′(η). (4.45)

• h(η) =
C − C∞
Cw − C∞

⇒ (C − C∞) = h(η)(Cw − C∞)

⇒ K(C − C∞) = K0e
x
Lh(η)(C∞ + C0e

x
2L − C∞)

= C0K0e
3x
2Lh(η). (4.46)

Using (4.44) and (4.45) in the right side of (4.4),we get

D
∂2C

∂y2
−K(C − C∞) = DC0

ae
3x
2L

2Lvf
h′′(η)− h(η)C0K0e

3x
2L

= C0e
3x
2L

(
D

a

2Lνf
h′′(η)−K0h(η)

)
(4.47)

Hence dimensionless form of equation (4.4) becomes:

C0
ae

3x
2L

2L

(
f ′(η)h(η)− h′(η)f(η)

)
= C0e

3x
2L

(
Dah′′(η)

2Lνf
−K0h(η)

)
⇒ a

2L
(f ′(η)h(η)− h′(η)f(η)) =

aD

2Lνf
h′′(η)−K0h(η)

⇒ f ′(η)h(η)− h′(η)f(η) =
D

νf
h′′(η)− 2LK0

a
h(η)

⇒ νf
D

(f ′(η)h(η)− h′(η)f(η)) = h′′(η)− 2LK0νf
aD

h(η)

⇒ νf
D

(f ′(η)h(η)− h′(η)f(η) +
2LK0νf

a
h(η)) = h′′(η)

⇒ h′′(η) +
νf
D

(f(η)h′(η)− f ′(η)h(η)− 2LK0νf
a

h(η)) = 0.
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The required ODEs are:

1

(1− φ)2.5(1− φ+ φ ρs
ρf

)
f ′′′ + ff ′′ + 2(1− f ′2)

+
1

(1− φ)2.5(1− φ+ φ ρs
ρf

)
(P + (1− φ)2.5M)(1− f ′) = 0, (4.48)

(
Knf

Kf

+R)θ′′ + Pr(1− φ+ φ
(ρcp)s

(ρcp)f
(fθ′ − f ′θ) (4.49)

+
1

(1− φ)2.5
Ecf ′′2 + PrMEcf ′2 = 0,

h′′ + Sc(fh′ − f ′h− γh) = 0. (4.50)

The boundary conditions (4.5)-(4.6) are:

f = 0, f ′ = 0, θ = 1, h = 1, at η = 0, (4.51)

f ′ → 1, θ → 0, h→ 0as η →∞. (4.52)

Different parameters used in the above equations have the following formulations:

P =
2Lvf
ak0

,M =
2σfB

2
0L

aρf
, R =

16σ1T
3
∞

3K
,Sc =

vf
D
,

γ =
2LK0

a
, Pr =

vf
αf
, Ec =

U∞
2

(cp)f (Tw − T∞)
, J =

2σfB
2
0L

aρf

vf
αf

U∞
2

(cp)f (Tw − T∞)
. (4.53)

The skin friction coefficient, is defined as:

Cfx =
2τw
ρfU2

∞
. (4.54)

• ∂u
∂y

= a

√
a

2Lνf
e
x
L e

x
2Lf ′′(η)

⇒
(
∂u

∂y

)∣∣∣∣
y=0

= a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0).

• τw = µnf

(
∂u

∂y

)∣∣∣∣
y=0

=
µf

(1− φ)2.5
a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0). (4.55)
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Using (4.55) in equation (4.54) ,we get the following form.

Cfx =
2

ρfU2
∞

µf
(1− φ)2.5

a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0)

=
2

U2
∞

νf
(1− φ)2.5

a

√
a

2Lνf
e
x
L e

x
2Lf ′′(0) ∴ νf =

µf
ρf

=

√
2νfa

L

1

(U∞)2
U∞e

x
2L

f ′′(0)

(1− φ)2.5
∴ U∞ = ae

x
L

=

√
2νf
L

1

U∞
(e

x
L )

1
2

f ′′(0)

(1− φ)2.5

=

√
2νf
LU∞

(e
x
L )

1
2

f ′′(0)

(1− φ)2.5

=

√
x
L√

xU∞
2νf

.
f ′′(0)

(1− φ)2.5

=

√
x
L√
Rex
2

.
f ′′(0)

(1− φ)2.5

⇒
Cfx

√
Rex
2√

x
L

=
f ′′(0)

(1− φ)2.5
,

The local Nusselt number is defined as:

Nux =
−xqw

kf (Tw − T∞)
(4.56)

• qw = −knf
(
∂T

∂y

)∣∣∣∣
y=0

= −knfT0
a

2νfL
e
x
L θ′(0) (4.57)

Using (4.57) in (4.56), we get the following form.

Nux = −
xknf (Tw − T∞) a

2νfL
e
x
L θ′(0)

kfe
x
2L (Tw − T∞)

∵ T0 =
(Tw − T∞)

e
x
2L

= −
xknf

a
2νfL

(e
x
L )

1
2 θ′(0)

kf

(4.58)
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= −
xknf

xae
x
L

2xνfL
θ′(0)

kf

= −knf
kf

(√
x

2L

√
xU∞
νf

)
= −

√
x

2L

knf
kf

√
Rexθ

′(0) ∵ Rex =
xU∞
νf

⇒
√

2L

x

√
1

Rex
Nux = −knf

kf
θ′(0),

The local sherwood number is defined as:

Shx =
xqm

D(Cw − C∞)
(4.59)

• qm = −D
(
∂C

∂y

)∣∣∣∣y=0

= −DC0

√
a

2Lνf
e
x
Lh′(0) (4.60)

Using (4.60) in (4.59) we get:

Shx =
−xDC0

√
a

2Lνf
e
x
Lh′(0)

D(Cw − C∞)

=
−xC0

√
a

2Lνf
e
x
Lh′(0)

(Cw − C∞)

=
−xC0

√
a

2Lνf
e
x
Lh′(0)

(Cw − Cw + C0e
x
2L )

∴ C∞ = Cw − C0e
x
2L

=
x
√

a
2Lνf

e
x
Lh′(0)

−e x
2L

=
x
√

a
2Lνf

e
x
Lh′(0)

(e
x
L )

1
2

= x

√
a

2Lνf
e
x
Lh′(0)(e

x
L )
−1
2

= x

√
a

2Lνf
h′(0)(e

x
L )

1
2

= x

√
ae

x
L

2Lνf
h′(0)
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= −x

√
xU∞
x2Lνf

h′(0)

= −
(√

xU∞
νf

)(
x

√
1

x2L
h′(0)

)
= −

√
Rex

√
x

2L
h′(0)

⇒ Shx

√
1

Rex

√
2L

x
= −h′(0),

Where τw is the skin fraction qw is the heat flux from the sheet. and Rex,represent the

local Reynolds numbers as Rex = xU∞
vf

4.3 Numerical solution

The shooting method requires the initial guess for f3(η) ,f5(η) and f7(η) at η = 0, and

through Newton’s method we vary each guess until we obtain an appropriate solution

for our problem. To check accuracy of the obtained numerical results by Shooting

method we compare them by the numerical results acquired by Matlab bvp4c built in

function and found them in excellent agreement. The analytic solution of the system

of equations with corresponding boundary conditions Eqs.(??) - (??) cannot be found

because they are non linear and coupled. The governing partial differential equation

are transformed into ordinary differential equation using similarity transformations.

The numerical solution for the system of differential equation are developed using

Runge-kutta scheme along with shooting technique. In order to solve the system of

Ordinary differential equations with boundary conditions equations. Let us use the

notation

f = y1, θ = y4, h = y6.

Further denote

f ′ = y′1 by y2, f
′′ = y2

′ by y3, θ
′ by y5, h

′ = y6
′ by y7.
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For simplification, the following notations have been opted.



(1− φ)2.5(1− φ+ φ ρs
ρf

) = b1,

P + (1− φ)2.5M = b2,

Pr

(
1−φ+φ

(
φ(ρcp)s
(ρcp)f

))(
knf
kf

+R
) = b3,

(1−φ)2.5
PrEc

(knf
kf

+R
)

= b4,

MPrEc = b5.

The system of equations 4.41)-(4.43), can now be written in the form of following first

ODEs

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− b2(1− y2), y3(0) = s,

y′4 = y5, y4(0) = 1,

y′5 = b3(y2y4 − y1y5)− b4y23 + b5y
2
2, y5(0) = t,

y′6 = y7, y6(0) = 1,

y′7 = Sc(γy6 + y2y6 − y1y7), y7(0) = w.

In the above system of equations the missing conditions s, t and w are to be chosen

such that

y3(η∞, s, t, w) = 0, y5(η∞, s, t, w) = 0, y7(η∞, s, t, w) = 0.

To solve the system of algebraic equations we use the Newton,s method which has the

following iterative scheme:
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
s(k+1)

t(k+1)

w(k+1)

 =


s(k)

t(k)

w(k)

−


∂y2
∂s

∂y2
∂t

∂y2
∂w

∂y4
∂s

∂y4
∂t

∂y4
∂w

∂y6
∂s

∂y6
∂t

∂y6
∂w


−1

(s(k),t(k),w(k))


y
(k)
2

y4(k)

y
(k)
6


(s(k),t(k),w(k))

.

Now use the following notations:

∂y1
∂s

= y8,
∂y2
∂s

= y9, ...,
∂y7
∂s

= y14,

∂y1
∂t

= y15,
∂y2
∂t

= y16, ...,
∂y7
∂t

= y21,

∂y1
∂w

= y22,
∂y2
∂w

= y23, ...,
∂y7
∂w

= y28.

As a result of these these new notations, the Newton’s iterative scheme gets the form:


s(k+1)

t(k+1)

w(k+1)

 =


s(k)

t(k)

w(k)

−

y9 y16 y23

y11 y18 y25

y13 y20 y27


−1

(s(k),t(k),w(k))


s(k)

t(k)

w(k)


(s(k),t(k),w(k))

.

Now differentiate the above system of seven first order ODEs with respect to each of

the variables s, t and w to have another system of twenty one ODEs. Writing all these
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twenty eight ODEs together, we have the the following IVP:

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− b2(1− y2), y3(0) = s,

y′4 = y5, y4(0) = 1,

y′5 = b3(y2y4 − y1y5)− b4y23 + b5y2
2, y5(0) = t,

y′6 = y7, y6(0) = 1,

y′7 = Sc(γy6 + y2y6 − y1y7), y7(0) = w,

y′8 = y9, y8(0) = 0,

y′9 = y10, y9(0) = 0,

y′10 = −b1(y1y10 + y8y3 − 4(y2y9)) + b2y9) y10(0) = 1,

y′11 = y12, y11(0) = 0,

y′12 = b3(y2y11 + y9y4 − y1y12 − y8y5)− 2b4y3y10 + 2b5y2y9, y12(0) = 0,

y′13 = y14, y13(0) = 0,

y′14 = Sc(γy13 + y2y13 + y6y9 − y21y7 − y14), y14(0) = 0,

y′15 = y16, y15(0) = 0,
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y′16 = y17, y16(0) = 0,

y′17 = −b1(y1y17 + y15y3 − 4(y2y16)) + b2y16, y17(0) = 0,

y′18 = y19, y18(0) = 0,

y′19 = b3(y2y18 + y16y4 − y1y19 − y15y5)− 2b4y3y17 + 2b5y2y16, y19(0) = 1,

y′20 = y21, y20(0) = 0,

y′21 = Sc(γy20 + y2y20 + y6y16 − y1y21 − y7y15), y21(0) = 0,

y′22 = y23, y22(0) = 0,

y′23 = y24, y23(0) = 0,

y′24 = −b1(+y1y24 + y22y3 − 4y2y23) + b2y23, y24(0) = 0,

y′25 = y26, y25(0) = 0,

y′26 = b3(y2y25 + y23y4 − y1y26 − y22y5)− 2b4y3y24 + 2b5y2y23, y26(0) = 0,

y′27 = y′27, y27(0) = 0,

y′28 = Sc(γy27 + y2y27 + y23y6 − y1y28 − y22y7), y28(0) = 1.

The fourth order Runge-Kutta method is used to solve the above system of twenty

eight equations with initial guesses s, t, w. These guesses are updated by the New-

ton’s scheme (3.51). The iterative process is repeated until the following criteria is met:

max|y2(η∞ − 1)|,max|y4(η∞ − 0)|,max|y6(η∞ − 0)| < ε,

where ε > 0 is the tolerance. For all the calculations in this chapter, we have set

ε = 10−6.

Table 4.1: Physical properties of water and nano particles

Fluid ρ(kg/m3) cp(J/kgK) K(W/mk) β × 105(K−1)

Pure water 997.1 4179 0.61 21

Copper 8933 385 401 1.67

Alumina 3970 765 40 0.85
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Table 4.2: Numerical results of skin-friction coefficient f ′′(0), Nusselt number
−θ′(0 and Sherwood number −h′(0) for (Cu-water)

Parameters Shooting method Matlabbvp4c

φ P M R Ec γ f′′(0) -θ′(0) -h′(0) f′′(0) -θ′(0) -h′(0)

0.0 0.1 1 0.1 0.1 0.1 2.0136 1.5437 0.7409 2.0136 1.5437 0.7409

0.1 3.6861 1.7001 0.7934 3.4335 1.7001 0.7934

0.2 5.4265 1.7363 0.8066 4.6418 1.7363 0.8066

0.1 0.2 3.7351 1.7076 0.7972 3.7351 1.7076 0.7972

0.3 3.7840 1.7149 0.8008 4.3001 8.4017 1.0444

0.4 3.0693 1.0181 0.8432 3.0693 1.0181 0.8432

0.9 3.3736 1.0483 0.8679 3.3736 1.0483 0.8679

0 3.2472 1.0483 0.8682 3.2472 1.0483 0.8682

2 3.6115 1.0586 0.8767 3.6115 1.0586 0.8767

3 3.7822 1.0632 0.8805 3.7822 1.0632 0.8805

5 4.1044 1.0716 0.8875 4.1044 1.0716 0.8875

0.2 3.4335 1.0924 0.9047 3.4335 1.0924 0.9047

0.3 3.4335 1.0924 0.9360 3.4335 1.1302 0.9360

0.5 3.4335 1.0924 0.9966 3.4335 1.2033 0.9966

0.3 2.2991 6.9198 0.8601 2.2991 6.9198 0.8601

-0.3 2.2989 6.9195 0.8601 2.2989 6.9195 0.8601

3.4335 1.0536 0.9966 3.4335 1.2033 0.9966

0.2 3.4335 1.0536 0.8726 3.4335 1.0536 0.8726

0.3 3.4335 1.0536 0.8726 3.4335 1.0536 0.8726

In table 4.1, shows the physical properties of the fluid water and nanoparticles. In

table 4.2, the numerical analysis of various physical parameters Cfx,Nux and Shx

under discussion is displayed. Table 4.2, it shows that by increasing the values of φ

skin friction, Nusselt number and Sherwood number is also increasing. By increasing

the permeability parameter P it also increase the values f ′′(0), θ′(0) and h′(0). If In

this table 4.2 demonstrate that by increasing the magnetic parameter M the values of

skin friction, Nusselt number and Sherwood number is also increasing. By increasing

radiation parameter R the nusselt number decrease and the Sherwood number increase.

Due to increase in chemical reaction parameter γ skin friction, the Nusselt number have

no effect and only Sherwood number is decreased. By increasing Eckert number Ec

then the values of skin friction, Nusselt number are same and Sherwood number values

decrease.
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4.4 Graphical representation

The numerical results are displayed in the form of graphs and tables. In this section for

numerical calculation physical properties of water, copper and alumina are considered.

The computations for various values is the volume fraction φ, the Prandtl number Pr,

chemical reaction γ, permeability parameter P , Magnetic parameter M , and hence

the effect of these parameters on heat and mass transfer are discussed.Figures 4.2 and

4.3 demonstrate the impact of the volume fraction and the magnetic parameter M on

the velocity . In these figures, we observe that the velocity increases with an increase

in the volume fraction of nanoparticles. These figures show that the hydrodynamic

boundary layer of Al2O3- water is thick as compared with that of Cu-water.

Figures 4.4 and ?? show the effect of Eckert number on temperature. If we increase

the value of Eckert number temperature profile increase Hence the thickness of the

thermal boundary layer increases. Figures 4.6 and 4.7 show the impact of the volume

fraction φ together with the magnetic parameter M on the concentration profile h. A

decreasing behaviour is found in the dimensionless concentration h for both Cu-water

and Al2O3 -water. In these figure, one can see that the concentration distribution

decreases if there is an increase in the volume fraction φ.

Figures 4.8 and 4.9 show the impact of the permeability parameter P together with

φ on the dimensionless velocity for both Cu-water and Al2O3-water. Fluid velocity

increases with the increasing values of both the permeability parameter P and φ .

Figure 4.10 and 4.11 show the impact of magnetic parameter on temperature. If the

increase the value of magnetic parameter temperature profile increase. These figures

show that the hydrodynamic boundary layer of Al2O3- water is thick as compared with

that of Cu-water.
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Figures 4.12 and 4.13 show the effect of φ on the dimensionless temperature θ of the

water based fluid with or without radiation. In these figures, temperature is increased

by increasing the values of the thermal radiation radiation increased. It happens be-

cause the thermal radiation increases the thermal diffusion.

Figures 3.14 and 3.15 show the impact of the viscous dissipation together with φ

on the temperature profile. When the value of the viscous dissipation is increased, the

fluid region is allowed to store the energy. As a result of dissipation due to fractional

heating, heat is generated. From this figure, we examine that the value of the thermal

boundary thickness increases with increasing values of φ and it will eventually increase

the temperature. Figures 4.16 and 4.17 show the impact of the chemical reaction to-

gether with φ on the dimensionless concentration. In these figures, it also observed

that when the chemical reaction increases, the concentration profiles decreases and

the increasing values of the volume fraction have small impact on the dimensionless

concentration. It is clear that in these figures velocities f ′(η) and temperature θ(η)

posses the same increasing behaviour for M and the concentration h(η) shows the

decreasing behaviour.
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Figure 4.2: Impact of φ and M on the dimensionless velocity f ′ for Cu− water
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Figure 4.3: Impact of φ andM on the dimensionless temperature θ for Al2O3-water
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Figure 4.4: Impact of Ec on the dimensionless temperature θ for Cu-water
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Figure 4.6: Impact of φ and M on the dimensionless concentration h for Cu-water
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Figure 4.8: Impact of φ and P on the dimensionless velocity f ′ for Cu-water
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Figure 4.9: Impact of φ and P on the dimensionless velocity f ′ for Al2O3-water
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Figure 4.10: Impact of M on the dimensionless temperature θ for Cu-water
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Figure 4.11: Impact of M on the dimensionless temperature θ for Al203-water
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Figure 4.12: Impact of φ and R on the dimensionless temperature θ for Cu-water
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Figure 4.13: Impact of φ and R on the dimensionless temperature θ for Al2O3-
water
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Figure 4.14: Impact of φ and Pr on the dimensionless temperature θ for Cu-water
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Figure 4.15: Impact of φ and Pr on the dimensionless temperature θ for Al2O3-
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Figure 4.16: Impact of φ and γ on the dimensionless concentration h for Cu-water
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Figure 4.17: Impact of φ and γ on the dimensionless concentration h for Al2O3-
water



Chapter 5

Conclusion

In this thesis, we have presented the numerical analysis of the MHD flow of the water-

based nanofluids. Heat and mass transfer are analyzed for steady, viscous dissipations

and Joule heating past a porous medium. We studied the MHD stagnation point flow

of viscous, incompressible and two-dimensional fluid past a permeable flat plate with

variable thermal conductivity κ and fluid viscosity µ in a uniform porous medium.

Further, we talk about the effect of radiation, chemical reaction, viscous dissipation

and Joule heating effect. The governing nonlinear partial differential equations of mo-

mentum, energy and mass transfer are changed into the ODEs by utilizing a proper

similarity transformation. By using the shooting method, numerical solution of these

modeled ordinary differential equations is obtained. A numerical comparison of the

solution computed by the shooting with that computed the MATLAB built-in func-

tion bvp4c for different parameters has shown an excellent agreement . Distinctive

physical parameters are examined, w.r.t The dimensionless velocity, temperature and

concentration profile are examined both graphically and in the tabular form for differ-

ent values of different parameters involved. On the basis of the analysis of solution,

we conclude the following findings.

• An increment in the velocity profile is observed for an increment in volume

fraction φ.

• The temperature profile θ increases with an increase in the volume fraction

86
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φ.

• The concentration profile h decreases with an increment in the volume fraction φ.

• The skin friction is found to increase by increasing the values of the of permeability

parameter P for both Cu and Al2O3 nanofluids.

• Looking the effect of volume fraction and the chemical reaction, the mass transfer

rate is observed to

rise.

• It also observed that the chemical reaction parameter γ increases with a decrease

in concentration profile.

• The temperature field θ reduces due to the a solid volume fraction φ.

• For increasing values of the permeability parameter Pr skin friction coefficient Cfx

shows an increasing behaviour.

• The temperature field θ increase with water based copper and Aluminia due to in-

crease the Ec and R .
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